SoftMax
用作多分类,比如手写数字识别,识别 0-9 共 10 个数字
想预测 m 个结果
- 输入矩阵 X
(n, feature_num)
- 权重矩阵 W
(feature_num, m)
- 偏差 b
(1, m)
某一行预测的值加和为 1,并且每个值非负,这里用到了 e^x 指数函数,因为 e^x >= 0 (当x无穷小)
原生实现
思路
- 加载 mnist 数据集,分为训练集 train_set 和 测试集 test_set
- 预测
y_hat = softmax(W*x+b)
与 y 的误差,误差函数采用交叉熵函数
,使用随机梯度下降更新W
和b
??? 表述对么? - 设置 学习率 和 批大小,对模型进行优化
实现代码
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
from IPython import display
# labels为[0,1,2,4,3]这种,转换为真实的类别英文
def get_fashion_mnist_labels(labels):
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
# 根据batch_size抽取训练集和测试集,(train_iter, test_iter)
# 每个iter有X和y,X为对应的张量,y为对应的label index
def load_data_fashion_mnist(batch_size, resize=None):
"""下载Mnist数据集,将其加载到内存中"""
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
#print(trans)
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True
)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True
)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=4),
data.DataLoader(mnist_test, batch_size, shuffle=True,
num_workers=4),
)
# 使用softmax来保证每行的每项都是>=0,并且每行总和加和=1
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1, keepdim=True)
#print(f'X {X} \nX_exp {X_exp} \npartition {partition}')
return X_exp / partition
# 模型
def net(X):
return softmax(
torch.matmul(X.reshape(-1, W.shape[0]), W) + b
)
# 损失函数,交叉熵损失 -log(y_hat * y)
def cross_entropy(y_hat, y):
return -torch.log(y_hat[range(len(y_hat)), y])
# 平方损失函数
def L2(y_hat, y):
return (y_hat.reshape(y.shape) - y) ** 2 / 2
#随机梯度下降 更新w和b
def updater(batch_size):
return d2l.sgd([W,b], lr, batch_size)
# 准确评估函数,对于每行最大值作为预测结果,判断预测准确精度
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1) # 找到每一行最大值的index
#print(f'y_hat {y_hat}')
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
# 网络训练
def train_epoch_ch3(net, train_iter, loss, updater):
if isinstance(net, torch.nn.Module):
net.train()
# 训练损失总和,训练准确度总和,样本数
metric = d2l.Accumulator(3)
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.mean().backward()
updater.step()
else:
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# 返回训练损失和 和 训练精度
return metric[0] / metric[2], metric[1] / metric[2]
# 通过渐变图形观测结果
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
ylim=[0.3, 0.9], legend=['train loss', 'train acc', 'test acc']
)
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = d2l.evaluate_accuracy(net, test_iter)
animator.add(epoch+1, train_metrics + (test_acc,))
train_loss, train_acc = train_metrics
assert train_loss < 0.5, train_loss
assert train_acc <= 1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc
batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size)
# 图片是 1*28*28的
num_inputs = 28*28
num_outputs = 10
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)
lr = 0.1
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
torch工具类实现
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights)
trainer = torch.optim.SGD(net.parameters(), lr=0.1)
num_epochs = 10
loss = nn.CrossEntropyLoss(reduction='none')
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)