基于VSCode和CMake进行C/C++开发
开发环境搭建
编译器,调试器安装
- 安装GCC,GDB
sudo apt update
# 通过以下命令安装编译器和调试器
sudo apt install build-essential gdb
- 安装成功确认
# 以下命令确认每个软件是否安装成功
# 如果成功,则显示版本号
gcc --version
g++ --version
gdb --version
CMake安装
安装cmake
# 通过以下命令安装编译器和调试器
sudo apt install cmake
安装成功确认
# 确认是否安装成功
# 如果成功,则显示版本号
cmake --version
GCC编译器
编译过程
- 预处理-Pre-Processing //.i文件
# -E 选项指示编译器仅对输入文件进行预处理(对#include, #define做文本替换)
g++ -E test.cpp -o test.i //.i文件
- 编译-Compiling // .s文件
# -S 编译选项告诉 g++ 在为 C++ 代码产生了汇编语言文件后停止编译
# g++ 产生的汇编语言文件的缺省扩展名是 .s
g++ -S test.i -o test.s
- 汇编-Assembling // .o文件
# -c 选项告诉 g++ 仅把源代码编译为机器语言的目标代码
# 缺省时 g++ 建立的目标代码文件有一个 .o 的扩展名。
g++ -c test.s -o test.o
- 链接-Linking // bin文件
# -o 编译选项来为将产生的可执行文件用指定的文件名
g++ test.o -o test
重要编译参数
- -g编译带调试信息的可执行文件
# -g 选项告诉 GCC 产生能被 GNU 调试器GDB使用的调试信息,以调试程序。
# 产生带调试信息的可执行文件test
g++ -g test.cpp
- O[n] 优化源代码
## 所谓优化,例如省略掉代码中从未使用过的变量、直接将常量表达式用结果值代替等等,这些操作会缩减目标文件所包含的代码量,提高最终生成的可执行文件的运行效率。
# -O 选项告诉 g++ 对源代码进行基本优化。这些优化在大多数情况下都会使程序执行的更快。 -O2 选项告诉 g++ 产生尽可能小和尽可能快的代码。 如-O2,-O3,-On(n 常为0–3)
# -O 同时减小代码的长度和执行时间,其效果等价于-O1
# -O0 表示不做优化
# -O1 为默认优化
# -O2 除了完成-O1的优化之外,还进行一些额外的调整工作,如指令调整等。
# -O3 则包括循环展开和其他一些与处理特性相关的优化工作。
# 选项将使编译的速度比使用 -O 时慢, 但通常产生的代码执行速度会更快。
# 使用 -O2优化源代码,并输出可执行文件
g++ -O2 test.cpp
- l 和 -L 指定库文件 | 指定库文件路径
# -l参数(小写)就是用来指定程序要链接的库,-l参数紧接着就是库名
# 在/lib和/usr/lib和/usr/local/lib里的库直接用-l参数就能链接
# 链接glog库
g++ -lglog test.cpp
# 如果库文件没放在上面三个目录里,需要使用-L参数(大写)指定库文件所在目录
# -L参数跟着的是库文件所在的目录名
# 链接mytest库,libmytest.so在/home/draymonder/mytestlibfolder目录下
g++ -L/home/draymonder/mytestlibfolder -lmytest test.cpp
- -I 指定头文件搜索目录
# -I
# /usr/include目录一般是不用指定的,gcc知道去那里找,但 是如果头文件不在/usr/icnclude里我们就要用-I参数指定了,比如头文件放在/myinclude目录里,那编译命令行就要加上-I/myinclude 参数了,如果不加你会得到一个”xxxx.h: No such file or directory”的错误。-I参数可以用相对路径,比如头文件在当前 目录,可以用-I.来指定。上面我们提到的–cflags参数就是用来生成-I参数的。
g++ -I/myinclude test.cpp
- -Wall 打印警告信息
# 打印出gcc提供的警告信息
g++ -Wall test.cpp
- -w 关闭警告信息
# 关闭所有警告信息
g++ -w test.cpp
- -std=c++11 设置编译标准
# 使用 c++11 标准编译 test.cpp
g++ -std=c++11 test.cpp
- -o 指定输出文件名
# 指定即将产生的文件名
# 指定输出可执行文件名为test
g++ test.cpp -o test
- -D 定义宏
# 在使用gcc/g++编译的时候定义宏
# 常用场景:
# -DDEBUG 定义DEBUG宏,可能文件中有DEBUG宏部分的相关信息,用个DDEBUG来选择开启或关闭DEBUG
示例代码:
// -Dname 定义宏name,默认定义内容为字符串“1”
#include <stdio.h>
int main()
{
#ifdef DEBUG
printf("DEBUG LOG\n");
#endif
printf("in\n");
}
// 1. 在编译的时候,使用gcc -DDEBUG main.cpp
// 2. 第七行代码可以被执行
注:使用 man gcc
命令可以查看gcc英文使用手册
g++命令行编译
案例:最初目录结构: 2 directories, 3 files
# 最初目录结构
.
├── include
│ └── Swap.h
├── main.cpp
└── src
└── Swap.cpp
2 directories, 3 files
直接编译
最简单的编译,并运行
# 将 main.cpp src/Swap.cpp 编译为可执行文件
g++ main.cpp src/Swap.cpp -Iinclude
# 运行a.out
./a.out
增加参数编译,并运行
# 将 main.cpp src/Swap.cpp 编译为可执行文件 附带一堆参数
g++ main.cpp src/Swap.cpp -Iinclude -std=c++11 -O2 -Wall -o b.out
# 运行 b.out
./b.out
生成库文件并编译
- 链接静态库生成可执行文件①
## 进入src目录下
$cd src
# 汇编,生成Swap.o文件
g++ Swap.cpp -c -I../include
# 生成静态库libSwap.a
ar rs libSwap.a Swap.o
## 回到上级目录
$cd ..
# 链接,生成可执行文件:staticmain
g++ main.cpp -Iinclude -Lsrc -lSwap -o staticmain
- 链接动态库生成可执行文件②
## 进入src目录下
$cd src
# 生成动态库libSwap.so
g++ Swap.cpp -I../include -fPIC -shared -o libSwap.so
## 上面命令等价于以下两条命令
# gcc Swap.cpp -I../include -c -fPIC
# gcc -shared -o libSwap.so Swap.o
## 回到上级目录
$cd ..
# 链接,生成可执行文件:sharemain
g++ main.cpp -Iinclude -Lsrc -lSwap -o sharemain
- 编译完成后的目录结构
最终目录结构:2 directories, 8 files
# 最终目录结构
.
├── include
│ └── Swap.h
├── main.cpp
├── sharemain
├── src
│ ├── libSwap.a
│ ├── libSwap.so
│ ├── Swap.cpp
│ └── Swap.o
└── staticmain
2 directories, 8 files
运行可执行文件
运行可执行文件①
# 运行可执行文件
./staticmain
运行可执行文件②
# 运行可执行文件
LD_LIBRARY_PATH=src ./sharemain
GDB调试器
调试开始:执行gdb [exefilename] ,进入gdb调试程序,其中exefilename为要调试的可执行文件名
调试想看代码可以
ctrl+x
后ctrl+a
进入gui模式
常用命令
## 以下命令后括号内为命令的简化使用,比如run(r),直接输入命令 r 就代表命令run
$(gdb)help(h) # 查看命令帮助,具体命令查询在gdb中输入help + 命令
$(gdb)run(r) # 重新开始运行文件(run-text:加载文本文件,run-bin:加载二进制文件)
$(gdb)start # 单步执行,运行程序,停在第一行执行语句
$(gdb)list(l) # 查看原代码(list-n,从第n行开始查看代码。list+ 函数名:查看具体函数)
$(gdb)set # 设置变量的值
$(gdb)next(n) # 单步调试(逐过程,函数直接执行)
$(gdb)step(s) # 单步调试(逐语句:跳入自定义函数内部执行)
$(gdb)backtrace(bt) # 查看函数的调用的栈帧和层级关系
$(gdb)frame(f) # 切换函数的栈帧
$(gdb)info(i) # 查看函数内部局部变量的数值
$(gdb)finish # 结束当前函数,返回到函数调用点
$(gdb)continue(c) # 继续运行
$(gdb)print(p) # 打印值及地址
$(gdb)quit(q) # 退出gdb
$(gdb)break+num(b) # 在第num行设置断点
$(gdb)info breakpoints # 查看当前设置的所有断点
$(gdb)delete breakpoints num(d) # 删除第num个断点
$(gdb)display # 追踪查看具体变量值
$(gdb)undisplay # 取消追踪观察变量
$(gdb)watch # 被设置观察点的变量发生修改时,打印显示
$(gdb)i watch # 显示观察点
$(gdb)enable breakpoints # 启用断点
$(gdb)disable breakpoints # 禁用断点
$(gdb)x # 查看内存x/20xw 显示20个单元,16进制,4字节每单元
$(gdb)run argv[1] argv[2] # 调试时命令行传参
$(gdb)set follow-fork-mode child # Makefile项目管理:选择跟踪父子进程(fork())
Tips:
编译程序时需要加上-g,之后才能用gdb进行调试:
gcc -g main.c -o main
回车键:重复上一命令
CMake实战
- 编写
CMakeLists.txt
make build && cd build && cmake .. && make
简单实例
cmake_minimum_required(VERSION 3.0)
project(HELLO)
add_compile_options(-Wall --std=c++11 -O2)
# 编译类型 Debug / Release
set(CMAKE_BUILD_TYPE Debug )
# 二进制文件运行路径
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_BINARY_DIR}/bin)
# 生成库文件
add_library(swap SHARED src/swap.cpp )
# 库文件头文件
target_include_directories(swap PUBLIC ${PROJECT_SOURCE_DIR}/include )
# 二进制文件
add_executable( main main.cpp )
# 链接 libswap.so
target_link_libraries( main swap )
VSCode
tasks.json
用来做任务编排使用
{
"version": "2.0.0",
"options": {
"cwd": "${workspaceFolder}/build"
},
"tasks": [
{
"type": "shell",
"label": "cmake",
"command": "cmake",
"args": [
".."
]
},
{
"label": "make",
"group": {
"kind": "build",
"isDefault": true
},
"command": "make",
"args": [
]
},
{
"label": "Build",
"dependsOrder": "sequence", // 按列出的顺序执行任务依赖项
"dependsOn":[
"cmake",
"make"
]
}
]
}